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Abstract We study a weighted-set graph coloring problem in which one assigns q colors
to the vertices of a graph such that adjacent vertices have different colors, with a vertex
weighting w that either disfavors or favors a given subset of s colors contained in the set
of q colors. We construct and analyze a weighted-set chromatic polynomial Ph(G,q, s,w)

associated with this coloring. General properties of this weighted-set chromatic polynomial
are proved, and illustrative calculations are presented for various families of graphs. This
study extends a previous one for the case s = 1 and reveals a number of interesting new
features.

Keywords Potts model · Graph coloring

1 Introduction

Recently, two weighted graph coloring problems have been formulated and studied in which
one assigns q colors to the vertices of a graph subject to the condition that adjacent vertices
(i.e., vertices connected by an edge of the graph) have different colors, with a vertex weight-
ing w that either disfavors (for 0 ≤ w < 1) or favors (for w > 1) a given color [1, 2]. Since
all of the colors are, a priori, equivalent, it does not matter which color one takes to be
given the weighting. An assignment of q colors to the vertices of a graph G, such that adja-
cent vertices have different colors, is called a “proper q-coloring” of the vertices of G. In the
present paper we shall study a generalization of this problem in which one performs a proper
q-coloring of the vertices of a graph G such that s colors are favored or disfavored relative to
the remaining q − s colors. We denote these coloring problems as the DFSCP and FSCP for
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disfavored or favored weighted-set graph vertex coloring problems. We analyze the prop-
erties of an associated weighted-set chromatic polynomial, denoted Ph(G,q, s,w), which
generalizes the chromatic polynomial P (G,q) and the single-color weighted chromatic
polynomial Ph(G,q,w) ≡ Ph(G,q,1,w) analyzed in Ref. [2]. We shall denote the set of
integers {1, . . . , s}, representing colors, as Is and the orthogonal complement {s + 1, . . . , q}
as I⊥

s . To each proper q-coloring of the vertices of a graph G there corresponds a term wns ,
where ns denotes the number of vertices assigned a color in Is . The sum of such terms result-
ing from all of these proper q-colorings of the vertices of G is the function Ph(G,q, s,w).
As we shall show below, this is a polynomial not only in w, but also in q and s. This poly-
nomial constitutes a w-dependent measure, extended from the integers to the real numbers,
of the number of proper q-colorings of the vertices of G. In the weighted-set graph coloring
problem for a given graph G, with q ∈ N+ being the number of colors, Ph(G,q, s,w) is a
map from (q, s,w) ∈ N+ × Is × [0,∞) to R. One can formally extend the domain of each
of the variables q , s, and w to R or, indeed, C, and the latter extension is necessary when
one analyzes the zeros of Ph(G,q, s,w). The polynomial Ph(G,q, s,w) is equivalent to the
partition function of the q-state Potts antiferromagnet on the graph G in a set of external
magnetic fields, in the limit where the effective spin-spin exchange coupling becomes infi-
nitely strong, so that the only spin configurations contributing to this partition function are
those for which spins on adjacent vertices are different [1–3]. There has been continuing
interest in the Potts model and chromatic and Tutte polynomials for many years; reviews
of the Potts model include [4–7] and reviews of chromatic and Tutte polynomials include
[8–16].

There are several motivations for this study, arising from the areas of mathematics,
physics, and engineering. One motivation is the intrinsic mathematical interest in graph
coloring problems and the fact that there seems to have been very little previous study of
weighted-set graph coloring. A second one stems from the equivalence to the statistical
mechanics of the Potts antiferromagnet in a set of magnetic fields that disfavor or favor a
corresponding set of spin values. A third reason for interest in this subject is the fact that
these weighted-set graph coloring problems have practical applications. For example, the
weighted graph coloring problem with 0 ≤ w < 1 (i.e., the DFSCP) describes, among other
things, the assignment of frequencies to commercial radio broadcasting stations in an area
such that (i) adjacent stations must use different frequencies to avoid interference and (ii)
stations prefer to avoid transmitting on a set of s specific frequencies, e.g., because these
are used for data-taking by a nearby radio astronomy antenna. The weighted graph coloring
problem with w > 1 (i.e., the FSCP) describes this frequency assignment process with a
preference for a set of s frequencies, e.g., because these are most free of interference. We
shall especially emphasize the connections with the first two of these areas in this paper.

We note some special cases of the weighted-set chromatic polynomial. Let us consider
a graph G = (V ,E), defined by its set of vertices V and edges (= bonds) E. We denote
the numbers of vertices and edges of G as n(G) ≡ n and e(G). The values s = 0 and w = 1
correspond to the usual unweighted proper q-coloring of the vertices of G, so Ph(G,q, s,w)

reduces to the usual chromatic polynomial counting the number of proper q-colorings of the
vertices of G:

Ph(G,q, s,1) = Ph(G,q,0,w) = P (G,q). (1.1)

Since the right-hand side of (1.1) is independent of s and w, this relation also implies the
differential equations

∂Ph(G,q, s,1)

∂s
= 0 (1.2)
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and

∂Ph(G,q,0,w)

∂w
= 0. (1.3)

For w = 0, one is prevented from assigning any of the s disfavored colors to any of the ver-
tices, so that the problem reduces to that of a proper coloring of the vertices of G with q − s

colors, without any weighting among them. This is described by the usual (unweighted)
chromatic polynomial P (G,q − s), so

Ph(G,q, s,0) = P (G,q − s). (1.4)

Thus, the DFSCP, described by Ph(G,q, s,w) may be regarded as interpolating between
P (G,q) and P (G,q − s) as w decreases through real values from w = 1 to w = 0. (The
case of no weighting, w = 1, may be considered to be the border between the DFSCP and
FSCP regimes.) If s = q , so that all of the colors receive the same weighting, then, as is
clear from its definition, the weighted-set chromatic polynomial reduces to wn times the
unweighted chromatic polynomial:

Ph(G,q, q,w) = wnP (G,q). (1.5)

Thus, for s = 0 and s = q , Ph(G,q, s,w) reduces to 1 and wn times P (G,q), respec-
tively, while for other values of s, in particular, for integer s in the interval 1 ≤ s ≤ q − 1,
Ph(G,q, s,w) is a new polynomial which is not, in general, reducible to P (G,q). Hence,
while retaining the term DFSCP, we shall often focus on the new cases where w lies
strictly between 1 and 0. As we shall show below, the weighted-set chromatic polynomial
Ph(G,q, s,w) satisfies a basic symmetry relation involving the interchange of s with q − s,
so that a knowledge of the weighted-set proper q-coloring of the vertices of a graph G with
a set of s colors is equivalent to a knowledge of the proper coloring of the vertices of G with
a set of q − s colors.

There are important differences between the case s = 1 studied previously in Ref. [2]
and the cases 2 ≤ s ≤ q . For s = 1, as w increases above 1 to large positive values, the
favored weighting of one color is increasingly in conflict with the strict constraint that no
two adjacent vertices have the same color. Hence, this involves competing interactions and
frustration. In contrast, in the FSCP regime with s ≥ 2, depending on the graph G, one may
avoid this conflict and the resultant frustration. Specific differences will be apparent in our
explicit results. For example, in our general result for Z(G,q, s, v,w) for the circuit graph
Cn in (5.5) below, one term vanishes identically in the case s = 1 but is present for other
values of s in the interval Is . (By the s ↔ q − s symmetry in (2.4) and (2.13), this also
means that another term vanishes identically for s = q − 1 but is present for other values of
s ∈ Is .)

2 Some Basic Properties

2.1 Connection of Ph(G,q, s,w) with Statistical Mechanics

It is useful to see how the function Ph(G,q, s,w) arises in a more general statistical me-
chanical context. As before, we have G = (V ,E). A spanning subgraph G′ ⊆ G is defined
as the subgraph containing the same set of vertices V and a subset of the edges of G;
G′ = (V ,E′) with E′ ⊆ E. We denote the number of connected components of G as k(G)
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and the connected subgraphs of a spanning subgraph G′ as G′
i , i = 1, . . . , k(G′). To obtain

an expression for Ph(G,q, s,w), we make use of the fact that it is a special case of the
partition function for the q-state Potts model in the presence of external magnetic fields in
the limit of infinitely strong antiferromagnetic spin-spin coupling. In thermal equilibrium at
temperature T , the general Potts model partition function is given by

Z =
∑

{σn}
e−βH (2.1)

with the Hamiltonian

H = −J
∑

〈ij 〉
δσi ,σj

−
q∑

p=1

Hp

∑

�

δσ�,p, (2.2)

where i, j, � label vertices of G, σi are classical spin variables on these vertices, taking
values in the set Iq = {1, . . . , q}, β = (kBT )−1, 〈ij 〉 denote pairs of adjacent vertices, p is
an integer, p ∈ Iq , and Hp is an external magnetic field given by

Hp =
{

H 
= 0 for 1 ≤ p ≤ s

0 for s + 1 ≤ p ≤ q.
(2.3)

The zero-field Potts model Hamiltonian H and partition function Z are invariant under the
global transformation in which σi → gσi ∀i ∈ V , with g ∈ Sq , where Sq is the symmetric
(= permutation) group on q objects. Because of this invariance, we can, without loss of
generality, take the external magnetic fields Hp to single out a set of s contiguous spin values
(equivalently, colors) σi ∈ Is as disfavored or favored, relative to the orthogonal complement
of values σi ∈ I⊥

s . In the presence of the magnetic fields Hp given in (2.3), the symmetry
group of H and Z is reduced to the tensor product

Sq → Ss ⊗ Sq−s . (2.4)

That is, if g1 ∈ Ss and g2 ∈ Sq−s , then the global transformation σi → (g1 ⊗ g2)σi ∀i leaves
H and Z invariant. Here (g1 ⊗ g2)σi means g1σi if σi ∈ Is and g2σi if σi ∈ I⊥

s .
Let us introduce the notation

K = βJ, h = βH, y = eK, v = y − 1, w = eh. (2.5)

Thus, the physical ranges of v are v ≥ 0 for the Potts ferromagnet, and −1 ≤ v ≤ 0 for the
Potts antiferromagnet. The weighted-set chromatic polynomial is then obtained by choosing
the antiferromagnetic sign of the spin-spin coupling, J < 0 and taking K → −∞ while
keeping h = βH fixed. Since K = βJ , the limit K → −∞ results if (i) one takes J → −∞
while holding T and H fixed and finite, or (ii) one takes T → 0, i.e., β → ∞, with J

fixed and finite and H → 0 so as to keep h = βH fixed and finite. The limit K → −∞
guarantees that no two adjacent spins have the same value, or, in the coloring context, that
no two adjacent vertices have the same color. One sees that in this statistical mechanics
context, it is the external magnetic fields that produce the weighting that favors or disfavors
a given set Is of spin values. Positive H gives a weighting that favors spin configurations
in which spins have values in the set Is , or equivalently, vertex colorings with colors in
this set, while negative H disfavors such configurations. For positive and negative H , the
corresponding ranges of w are w > 1 and 0 ≤ w < 1, respectively.
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In Ref. [2] a formula was derived for the partition function Z which does not make any
explicit reference to the spins σi or the summation over spin configurations, but instead
expresses this function as a sum of terms arising from the 2e(G) spanning subgraphs G′ ⊆ G,
namely

Z(G,q, s, v,w) =
∑

G′⊆G

ve(G′)
k(G′)∏

i=1

(
q − s + swn(G′

i
)
)
. (2.6)

This generalizes a spanning subgraph formula for Z in the case s = 1 due to F.Y. Wu [17],
which, itself, generalized the Fortuin-Kasteleyn formula for the zero-field Potts model par-
tition function [18],

Z(G,q, v) =
∑

G′⊆G

ve(G′)qk(G′). (2.7)

The original definition of the Potts model, (2.1) and (2.2), requires q to be in the set of
positive integers N+ and s to be a non-negative integer. These restrictions are removed
by (2.6). Furthermore, (2.6) shows that Z is a polynomial in the variables q , s, v, and w,
hence our notation Z(G,q, s, v,w).

The K → −∞ limit that yields the weighted-set chromatic polynomial is equivalent to
v = −1, so

Ph(G,q, s,w) = Z(G,q, s,−1,w). (2.8)

Hence,

Ph(G,q, s,w) =
∑

G′⊆G

(−1)e(G′)
k(G′)∏

i=1

(
q − s + swn(G′

i
)
)
. (2.9)

We recall the factorization

wm − 1 = (w − 1)

m−1∑

j=0

wj (2.10)

and apply it to (2.6) with m = n(G′
i ). Since the variable s only appears in (2.6) in the form

k(G′)∏

i=1

(
q − s + swn(G′

i
)
)

=
k(G′)∏

i=1

(
q + s(w − 1)

n(G′
i
)−1∑

r=0

wr

)
, (2.11)

it follows that Z(G,q, s, v,w) and Ph(G,q, s,w) can equivalently be written as polynomi-
als in the variables q , v, w, and

t = s(w − 1). (2.12)

The advantage of doing this is that it shortens expressions for these polynomials; however,
it renders the symmetries (2.13) and (2.14) below not manifest in the resultant expressions.

Having shown the connection of Ph(G,q, s,w) to Z(G,q, s, v,w), we observe that var-
ious properties of Ph(G,q, s,w) can be expressed more generally as corresponding prop-
erties of Z(G,q, s, v,w). From (2.6) it follows that the Potts model partition function
Z(G,q, s, v,w) satisfies a basic symmetry relating the values s and q − s:

Z(G,q, s, v,w) = wnZ(G,q, q − s, v,w−1) (2.13)
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so that, in particular, setting v = −1,

Ph(G,q, s,w) = wnPh(G,q, q − s,w−1). (2.14)

The symmetry relation (2.13) is obvious from a statistical mechanics context as well as from
the formula (2.6); it is a statement of the fact that the presence of the magnetic field disfavors
or favors the set of spin values σi ∈ Is relative to the orthogonal complement of spin values
σi ∈ I⊥

s , but, up to the prefactor, this is equivalent to replacing s by q − s and reversing the
sign of H , i.e., replacing w by 1/w.

If the magnetic field is zero, i.e., w = 1, or s = 0, so that no spin values are weighted
differently by this field, we have

Z(G,q, s, v,1) = Z(G,q,0, v,w) = Z(G,q, v), (2.15)

so that

∂Z(G,q, s, v,1)

∂s
= 0 (2.16)

and

∂Z(G,q,0, v,w)

∂w
= 0. (2.17)

If s = q , so that all spin values receive the same weighting, then

Z(G,q, q, v,w) = wnZ(G,q, v). (2.18)

Note that this result also follows by applying the symmetry relation (2.13), so that
Z(G,q, q, v,w) = wnZ(G,q,0, v,w−1) = wnZ(G,q, v). Moreover, if the disfavoring is
total, i.e., w = 0, then

Z(G,q, s, v,0) = Z(G,q − s, v). (2.19)

From the definition of Ph(G,q, s,w) as a sum of terms wns corresponding to proper
q-colorings of the vertices of the graph G such that ns vertices are assigned colors in
the weighted set Is , we can infer a general inequality. Let us denote the total set of
proper q-colorings of the vertices of G as {σ } and a subset as {σ }subset, and let us define
Ph(G,q, s,w)subset as the sum of terms wns resulting from the contributions of the sub-
set {σ }subset of proper q-colorings of the vertices of G. Then, since for the coloring prob-
lem at hand, where w ≥ 0, each such proper q-coloring contributes a non-negative term to
Ph(G,q, s,w), we have the general inequality

Ph(G,q, s,w) ≥ Ph(G,q, s,w)subset. (2.20)

2.2 Some Properties Connected with Characteristics of Graphs

If G has any loop, defined as an edge that connects a vertex to itself, then a proper q-coloring
is impossible. This is because such a q-coloring requires that any two adjacent vertices have
different colors, but since the vertices connected by an edge are adjacent, the presence of a
loop in G means that a vertex is adjacent to itself. Thus, Ph(G,q, s,w) = 0 if G contains a
loop. Hence, with no loss of generality, in our discussions of Ph(G,q, s,w) we shall restrict
our analysis in this paper to loopless graphs G. Thus, in the text below, where G = (V ,E)
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is characterized as having a non-empty edge set E 
= ∅, it is understood that E does not
contain any loops.

Another basic property of a chromatic polynomial is that as long as two vertices are
joined by an edge, adding more edges connecting these vertices does not change the chro-
matic polynomial. This is clear from the fact that the chromatic polynomial counts the num-
ber of proper q-colorings of the vertices of G, and the relevant condition—that two adjacent
vertices must have different colors—is the same regardless of whether one or more than one
edges join these vertices. Let us define an operation of “reduction of multiple edge(s)” in G,
denoted RE(G), as follows: if two vertices are joined by a multiple edge, then delete all
but one of these edges, and carry out this reduction on all edges, so that the resultant graph
RE(G) has only single edges. Then if G is a graph that contains one or more multiple edges
joining some set(s) of vertices, P (G,q) = P (RE(G), q). Since the same proper q-coloring
condition holds for the weighted-set chromatic polynomial, we have

Ph(G,q, s,w) = Ph(RE(G), q, s,w). (2.21)

Moreover, if G consists of two disjoint parts, G1 and G2, then Z(G,q, s, v,w) is simply
the product Z(G,q, s, v,w) = Z(G1, q, s, v,w)Z(G2, q, s, v,w), and the same factoriza-
tion property holds for the special case v = −1 that yields Ph(G,q, s,w). Hence, without
loss of generality, unless otherwise indicated, we shall restrict our discussion here to con-
nected graphs G.

2.3 Properties of Coefficients in Polynomial Expansions

Next, we prove some general structural properties of Z(G,q, s, v,w) and Ph(G,q, s,w)

that hold for an arbitrary graph G. From (2.6) and (2.9) one can derive certain factorization
properties of these polynomials. It is convenient to define the notation

q̃ = q − s. (2.22)

From (2.6), it follows that we can write Z(G,q, s, v,w) in several equivalent ways:

Z(G,q, s, v,w) =
n∑

i,j,�=0

e(G)∑

k=0

ai,j,k,�q
isj vkw� =

n∑

i,j,�=0

e(G)∑

k=0

bi,j,k,�q
isj ykw�

=
n∑

i,j,�=0

e(G)∑

k=0

ci,j,k,�q̃
isj vkw� =

n∑

i,j,�=0

e(G)∑

k=0

di,j,k,�q
i t j vkw�, (2.23)

where ai,j,k,�, bi,j,k,�, ci,j,k,�, and di,j,k,� are integers (and i, j, k, � are dummy summation
variables here). Some ai,j,k,� and bi,j,k,� can be negative, but the nonzero ci,j,k,� and di,j,k,�

are positive, as follows from (2.6) and (2.11). From these equations, one infers correspond-
ing ones for Ph(G,q, s,w) by setting v = −1, i.e., y = 0.

For our analysis below and for comparisons with chromatic polynomials, three types
of polynomial expansions will be useful. Because of the basic symmetry (2.13), the most
useful expansion of Z(G,q, s, v,w) is as a sum of powers of w with coefficients, denoted
as βG,j (q, s, v), which are polynomials in q , s, and v:

Z(G,q, s, v,w) =
n∑

j=0

βZ,G,j (q, s, v)wj . (2.24)
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The symmetry (2.13) implies the following relation among the coefficients:

βZ,G,j (q, s, v) = βZ,G,n−j (q, q − s, v) for 0 ≤ j ≤ n. (2.25)

In particular, for the special case v = −1 of primary interest here, we write

Ph(G,q, s,w) =
n∑

j=0

βG,j (q, s)wj , (2.26)

where

βG,j (q, s) ≡ βZ,G,j (q, s,−1). (2.27)

From (2.25), we have

βG,j (q, s) = βG,n−j (q, q − s) for 0 ≤ j ≤ n. (2.28)

If n is even, say n = 2m, then the middle coefficient is transformed into itself, giving rise to
the results that

If n = 2m is even, then βZ,G,m(q, s, v) = βZ,G,m(q, q − s, v)

βG,m(q, s) = βG,m(q, q − s). (2.29)

From (2.6), it is clear that the term of highest degree in w arises from products of the
swn(G′

i
) factors over the various connected components G′

i for each spanning subgraph
G′ ⊆ G, and then over the spanning subgraphs G′. This product does not involve q , so that

βZ,G,n(q, s, v) and βG,n(q, s) are independent of q. (2.30)

The βZ,G,j (q, s, v) coefficients have especially simple factorization properties, which we
analyze next. Evaluating (2.24) at w = 0, where only the w0 term remains, and combining
this evaluation with the relation (2.19), we derive the result

βZ,G,0(q, s, v) = Z(G,q − s, v). (2.31)

Combining the relation for w = 1 in (2.15) with (2.24), we derive a formula for the sum
of the coefficients βZ,G,j (q, s, v):

n∑

j=0

βZ,G,j (q, s, v) = Z(G,q, v). (2.32)

Because this sum is independent of s, (2.32) also yields the differential equation

∂

∂s

n∑

j=0

βZ,G,j (q, s, v) = 0. (2.33)

Next, we set s = q in (2.24) and use (2.18). Since the resulting expression must be pro-
portional to wn, all of the coefficients of the terms in Z(G,q, s, v,w) of lower degree in w

than n must vanish. Because these coefficients βZ,G,j (q, s, v) are polynomials in q and s (as
well as v), this means that they must contain the factor (q − s):

βZ,G,j (q, s, v) and βG,j (q, s) contain the factor (q − s) for 0 ≤ j ≤ n − 1. (2.34)
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Furthermore, using (2.18) for this s = q evaluation, we infer that βZ,G,n(q, q, v) =
Z(G,q, v). However, since, by (2.30), βZ,G,n(q, s, v) is independent of q and is only a
function of s and v, this implies that

βZ,G,n(q, s, v) = Z(G, s, v) (2.35)

(so we could drop the argument q , but for uniformity with other coefficients βZ,G,j (q, s, v),
we shall retain it).

Now setting s = 0 reduces Z(G,q, s, v,w) to Z(G,q, v) (cf. (2.15)). Since the w0 term
(given in (2.31)) is, by itself, equal to Z(G,q, v) for s = 0, this means that all of the other
terms proportional to nonzero powers wj , j = 1, . . . , n in Z(G,q, s, v,w) must vanish when
s = 0. This proves that

For 1 ≤ j ≤ n,βZ,G,j (q, s, v) and βG,j (q, s) contain a factor of s. (2.36)

Various special cases of these results for the weighted-set chromatic polynomial are ob-
tained by setting v = −1 in the requisite equations. Thus, (2.31) implies

βG,0(q, s) = P (G,q − s), (2.37)

and (2.35) implies

βG,n(q, s) = P (G, s). (2.38)

We now focus on Ph(G,q, s,w). The chromatic number of G, denoted χ(G), is the
minimal number of colors for which one can carry out a proper q-coloring of the vertices
of G. Since the proper q-coloring constraint cannot be satisfied for integer q in the interval
0 ≤ q ≤ χ(G) − 1, the chromatic polynomial P (G,q) vanishes for these values and hence
contains

∏χ(G)−1
j=0 (q − j) as a factor. Applying this to (2.38) shows that

βG,n(q, s) contains the factor
χ(G)−1∏

j=0

(s − j), (2.39)

and applying it to (2.37), taking into account the shift s → q − s, shows that

βG,0(q, s) contains the factor
χ(G)−1∏

j=0

(q − s − j). (2.40)

In particular, provided that G = (V ,E) contains at least one edge, so that χ(G) ≥ 2, we
have the results

If E 
= ∅, then βG,n(q, s) contains a factor s(s − 1) (2.41)

and

If E 
= ∅, then βG,0(q, s) contains a factor (q − s)(q − s − 1). (2.42)

Thus, although the maximal degree of Ph(G,q, s,w) in w is, in general, n, it is less than n if
s = 0 or s = 1. In the s = 0 case, all dependence on w disappears (cf. (1.1)), while for s = 1
we have previously analyzed the maximal degree of Ph(G,q,1,w) for various families of
graphs in Ref. [2]. For s = 1, provided that G contains at least one edge, Ph(G,q,w) has a



36 R. Shrock, Y. Xu

factor of (q − 1) [2]. This is not, in general, true for s in the interval 2 ≤ s ≤ q − 1, and this
is one of the ways that the properties of Ph(G,q, s,w) for 2 ≤ s ≤ q − 1 differ from those
for s = 1.

One can also express Z(G,q, s, v,w) as a polynomial in q with coefficients, denoted as
αZ,G,�(s, v,w), which are polynomials in s, v, and w:

Z(G,q, s, v,w) =
n∑

j=0

αZ,G,n−j (s, v,w)qn−j . (2.43)

Accordingly, with the notation

αG,n−j (s,w) ≡ αZ,G,n−j (s,−1,w), (2.44)

we write

Ph(G,q, s,w) =
n∑

j=0

αG,n−j (s,w)qn−j . (2.45)

From our discussion above, we have the following results for these latter coefficients for
Ph(G,q, s,w):

αG,n(s,w) = 1 (2.46)

and, using also (2.21),

αG,n−1(s,w) = ns(w − 1) − e(RE(G)). (2.47)

Finally, since the variable s only enters Z via the combination t = s(w − 1), it is also useful
to express the coefficients in (2.43) as polynomials in t , v, and w, and the coefficients in
(2.45) as polynomials in t and w. For a given graph G, we find that this usually simplifies
the expressions.

A chromatic polynomial P (G,q), written in the form

P (G,q) =
n−k(G)∑

j=0

αG,n−j q
n−j , (2.48)

has the property that the signs of the coefficients αG,n−j alternate:

sgn(αG,n−j ) = (−1)j , 0 ≤ j ≤ n − k(G). (2.49)

(where, as before, k(G) denotes the number of components of G, and we shall continue,
without loss of generality, to focus on connected graphs, so that k(G) = 1). This sign alterna-
tion property can be proved by iterated application of the deletion-contraction relation. Since
the weighted-set chromatic polynomial Ph(G,q, s,w) does not, in general, obey a deletion-
contraction relation, except for the values w = 1, w = 0, and s = 0 for which it reduces to
a chromatic polynomial, one does not expect the corresponding coefficients αG,n−j (s,w) in
(2.45) to have this sign-alternation property in general, and they do not. However, we have
proved that if w is in the DFSCP interval 0 ≤ w < 1, then the sign alternation property again
holds, i.e.,

sgn(αG,n−j (s,w)) = (−1)j for 0 ≤ w < 1 and 0 ≤ j ≤ n − 1. (2.50)
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The technical mathematical details of our proof will be given elsewhere. For the borderline
cases w = 1 and w = 0, as well as for s = 0 and s = q , Ph(G,q, s,w) reduces to a chromatic
polynomial, so the sign-alternation property is already established. For j = n, namely for the
q0 term in Ph(G,q, s,w), the sign alternation also holds for 0 ≤ w < 1; here the coefficient
αG,0(s,w) contains the factor t = s(w − 1) and hence vanishes at w = 1 and s = 0.

Setting q = 0 in (2.6), and recalling the factorization in (2.11), we deduce that

Z(G,0, v, s,w) = αZ,G,0(s, v,w) contains a factor of t = s(w − 1). (2.51)

The same holds, a fortiori, for the v = −1 special case, Ph(G,0, s,w), i.e., αG,0(s,w) con-
tains a factor of t = s(w − 1).

From a study of chromatic polynomials, R. Read observed that the magnitudes of the co-
efficients of successive powers of qn−j , 0 ≤ j ≤ n− k(G) in a chromatic polynomial satisfy
a unimodal property [8]. That is, the magnitudes of these coefficients get successively larger
and larger, and then smaller and smaller, as j increases from 0 to n − k(G). There is thus a
unique maximal-magnitude coefficient, or two successive coefficients whose magnitudes are
equal. From our calculations of weighted chromatic polynomials for a number of families of
graphs, we have observed that in the interval 0 ≤ w ≤ 1 this property continues to hold. We
therefore state the following conjecture: Conject. Let Ph(G,q, s,w) be written as in (2.45).
Then for real w in the interval 0 ≤ w ≤ 1, the quantities (−1)jαG,n−j (s,w), 0 ≤ j ≤ n, are
positive and satisfy the unimodal property, i.e., (−1)jαG,n−j (s,w) get progressively larger
and larger, and a maximal value is reached for a given j , or for two successive j values, and
then the quantities (−1)jαG,n−j (s,w) get progressively smaller, as j increases from 0 to n.

2.4 Measure of Deviation from Deletion-Contraction Relation

For a graph G, let us denote the graph obtained by deleting an edge e ∈ E as G − e and the
graph obtained by deleting this edge and identifying the two vertices that had been connected
by it as G/e. The Potts model partition function satisfies the deletion-contraction relation
(DCR)

Z(G,q, v) = Z(G − e, q, v) + vZ(G/e, q, v) (2.52)

and, setting v = −1, the chromatic polynomial thus satisfies the DCR

P (G,q, v) = P (G − e, q) − P (G/e, q). (2.53)

However, in general, neither Z(G,q, s, v,w) nor Ph(G,q, s,w) satisfies the respec-
tive deletion-contraction relation. For the special cases w = 1 and s = 0 for which
Z(G,q, s, v,w) and Ph(G,q, s,w) reduce to Z(G,q, v) and P (G,q), and for the spe-
cial case w = 0 for which Z(G,q, s, v,w) and Ph(G,q, s,w) reduce to Z(G,q − s, v) and
Ph(G,q − s), respectively, they do satisfy deletion-contraction relation. Hence, the devi-
ations from such a relation for Z(G,q, s, v,w) and Ph(G,q, s,w) vanish in these three
cases. For a given G, it is of interest to examine the quantities that measure the deviation
from the DCR, namely

[	Z(G,e, q, s, v,w)]DCR = Z(G,q, s, v,w)

− [Z(G − e, q, s, v,w) + vZ(G/e, q, s, v,w)] (2.54)

and

[	Ph(G, e, q, s,w)]DCR ≡ [	Z(G,e, q, s,−1,w)]DCR. (2.55)
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From our discussion above, it follows that [	Z(G,e, q, s, v,w)]DCR = 0, and hence also
	Ph(G, e, q, s,w)]DCR = 0, for w = 1, w = 0, and s = 0; therefore, since these functions
are polynomials in these variables, they contain a factor sw(w − 1). Moreover, since the
condition v = 0 is equivalent to the absence of any edges, whence Z = (q + t)n and the
deletion-contraction relation is satisfied trivially, [	Z(G,e, q, s, v,w)]DCR also vanishes for
v = 0. Thus, in general,

[	Z(G,e, q, s, v,w)]DCR contains the factor svw(w − 1), (2.56)

and [	Ph(G, e, q, s,w)]DCR contains a factor of sw(w − 1). As an illustration, using our
explicit calculations for n-vertex line graphs Ln and circuit graphs Cn, we find the following
results. For the first two graphs, L3 and C3, the deletion and contraction on any edge gives
the same result, so we need not specify which edge is involved. We find, for any edge e,

[	Z(L2, e, q, s, v,w)]DCR = svw(w − 1), (2.57)

[	Z(L3, e, q, s,w)]DCR = svw(w − 1)[s(w − 1) + wv + q], (2.58)

and

[	Z(C3, e, q, s, v,w)]DCR = svw(w − 1)[wv2 + 2wv + s(w − 1) + q]. (2.59)

As before, the corresponding [	Ph(G, e, q, s,w)]DCR expressions are obtained by set-
ting v = −1 in these equations. It is straightforward to calculate similar differences
[	Z(G,e, q, s, v,w)]DCR for graphs with more vertices and edges, but these are sufficient
for our illustration.

2.5 Distinguishing Between Various Equivalence Classes of Graphs

An important property of the weighted-set chromatic polynomial Ph(G,q, s,w) is the fact
that it can distinguish between certain graphs that yield the same chromatic polynomial
P (G,q). This is true for all w and s values except the special values w = 1, w = 0,
s = 0, and s = q , for which Ph(G,q, s,w) is reducible to a chromatic polynomial. More
generally, an important property of the partition function of the Potts model in a set of
nonzero external magnetic fields of the form (2.3), Z(G,q, s, v,w), is that this function can
distinguish between graphs that yield the same zero-field Potts model partition function,
Z(G,q, s, v,1) = Z(G,q, v). Two graphs G and H are defined as (i) Tutte-equivalent if
they have the same Tutte polynomial, or equivalently, the same zero-field Potts model parti-
tion function, Z(G,q, v), and (ii) chromatically equivalent if they have the same chromatic
polynomial, P (G,q). Here we recall that the Tutte polynomial T (G,x, y) of a graph G is
defined as

T (G,x, y) =
∑

G′⊆G

(x − 1)k(G′)−k(G)(y − 1)c(G′) (2.60)

where G′ is a spanning subgraph of G and c(G′) denotes the number of (linearly inde-
pendent) cycles in G′. (We remark that n(G′) − k(G′) and c(G′) are the rank and co-rank
(= cyclotomic number) of G′; thus, since n(G′) = n(G), k(G′) − k(G) is the relative rank
(rank difference) of G′ in G.) This polynomial is equivalent to the zero-field Potts model
partition function, via the relation

Z(G,q, v) = (x − 1)k(G)(y − 1)nT (G,x, y). (2.61)
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where y = v + 1 as in (2.5) and

x = 1 + q

v
. (2.62)

We give some examples. Recall the definition that a tree graph is a connected graph that
contains no circuits (cycles). The set of tree graphs with n vertices, generically denoted {Tn},
forms a Tutte equivalence class, with T (Tn, x, y) = xn−1, or equivalently,

Z(Tn, q, v) = q(q + v)n−1. (2.63)

However, Z(G,q, s, v,w) is able to distinguish between different tree graphs in a Tutte-
equivalence class. Because Z(G,q, s, v,w) reduces to a zero-field Potts model partition
function for w = 1, w = 0, s = 0, and s = q , it follows that the difference between
Z(G,q, s, v,w) and Z(H,q, s, v,w) for two Tutte-equivalent graph G and H must van-
ish if w = 1, w = 0, s = 0, or s = q . This difference also vanishes for v = 0, because in
this case the only spanning subgraph that contributes to the sum in (2.6) is the one with no
edges, which is the same for any (connected) Tutte-equivalent G and H . Since these are all
polynomials, it thus follows that

Z(G,q, s, v,w) − Z(H,q, s, v,w) contains the factor s(q − s)vw(w − 1). (2.64)

As an illustration, using our results for Z(L4, q, s, v,w) and Z(S4, q, s, v,w), we have

Z(S4, q, s, v,w) − Z(L4, q, s, v,w) = s(q − s)v2w(w − 1)2 (2.65)

and consequently

Ph(S4, q, s,w) − Ph(L4, q, s,w) = s(q − s)w(w − 1)2. (2.66)

The zero-field Potts model partition function Z(G,q, v), or equivalently, the Tutte poly-
nomial T (G,x, y), encodes information on the number of (linearly independent) cycles con-
tained in the graph G, as is evident from the definition (2.60). Define two scaled variables
as

q ′ ≡ q

s
, v′ ≡ v

s
. (2.67)

Let us consider a graph, denoted Gnc , which contains no cycles (nc), i.e., which has
c(G) = 0. A connected graph of this type is a tree graph, while a general graph is called
a forest. For a graph Gnc we find the following scaling relation:

Z(Gnc, q, s, v,w) = snZ(Gnc, q
′,1, v′,w). (2.68)

This is proved as follows. We start with the cluster formula (2.6) and rewrite this as

Z(Gnc, q, s, v,w) =
∑

G′⊆Gnc

(v′)e(G′)se(G′)+k(G′)
k(G′)∏

i=1

(
q ′ − 1 + wn(G′

i
)
)
. (2.69)

We next use the relation, which holds for any graph G′,

c(G′) + n(G′) = e(G′) + k(G′) (2.70)
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and the fact that n(G′) = n(G) ≡ n to rewrite the factor se(G′)+k(G′) as sc(G′)+n. Since Gnc

has no cycles, it follows that the same is true for any subgraph of Gnc , in particular, the
spanning subgraph G′, so c(G′) = 0. Hence, we can move the factor of sn in front of the
summation, and we have

Z(Gnc, q, s, v,w) = sn
∑

G′⊆Gnc

(v′)e(G′)
k(G′)∏

i=1

(
q ′ − 1 + wn(G′

i
)
)

= snZ(Gnc, q
′,1, v′,w). � (2.71)

Hence, the difference

[	Z(G,q, s, v,w)]cycles = Z(G,q, s, v,w) − snZ(G,q ′,1, v′,w) (2.72)

provides a measure of the number of cycles in G. For example, using our general result for
Z(Cn, q, s, v,w) given below in (5.2), we calculate

[	Z(Cn, q, s, v,w)]cycles = (s − 1)(q − s + swn)vn

s
. (2.73)

Moreover, the proper q-coloring condition implies that if two different graphs G and
H differ only in having different numbers of edges connecting a pair of adjacent vertices,
for one or more such pairs, so that RE(G) = RE(H), then Ph(G,q, s,w) = Ph(H,q, s,w).
A simple example is provided by the line and circuit graphs with n = 2 vertices, L2 and C2,
the latter of which has a double edge connecting the two vertices. Using our results in (3.2)
and (5.7), we calculate the difference

Z(C2, q, s, v,w) − Z(L2, q, s, v,w) = v(v + 1)
[
q + s(s − 1)(w + 1)

]
. (2.74)

The fact that the difference in (2.74) vanishes for v = −1, i.e., that Ph(L2, q, s,w) =
Ph(C2, q, s,w), is a special case of the general result (2.21).

In the context of graph coloring, since s ∈ Is , if one sets q to a particular value, this
implicitly sets a corresponding upper bound on s. In particular, if q = 1, then s can take on
only the values 0 or 1, and these are related by the symmetry (2.13). For s = 0, we have, by
(2.15), that

Z(G,1,0, v,w) = Z(G,1, v) = ye(G), (2.75)

where y = v + 1. For s = 1, applying (2.13), we have

Z(G,1,1, v,w) = wnZ(G,1,0, v,w−1) = wnZ(G,1, v) = ye(G)wn. (2.76)

If G has at least one edge, then the right-hand sides of both (2.75) and (2.76) vanish for
the case y = 0 (v = −1) that yields the weighted-set chromatic polynomial. In order for
two graphs G and H to be chromatically equivalent, a necessary condition is that they
must have the same number of vertices, n(G) = n(H), since the degree in q of P (G,q)

is n(G). An elementary property of the chromatic polynomial P (G,q), proved by iterative
application of the deletion-contraction theorem, is that the coefficient of the qn(G)−1 term is
−e(RE(G)). Therefore, another necessary condition that two graphs G and H must satisfy
in order to be chromatically equivalent is that e(RE(G)) = e(RE(H)). If G contains at
least one edge, then Ph(G,1, s,w) = 0. Note here that since s is bounded above by q ,



Weighted-Set Graph Colorings 41

it follows that if q = 1, then s can only take on the values s = 0 or s = 1. Hence, if G

and H are chromatically equivalent, then either (i) neither contains any edges, in which
case Ph(G,q, s,w) = Ph(H,q, s,w) = (q + t)n, where n = n(G) = n(H), or (ii) if G, and
hence H , contains at least one edge, then Ph(G,1, s,w) = Ph(H,1, s,w) = 0. Hence, if
G and H are chromatically equivalent and contain at least one edge, then the difference
Ph(G,q, s,w) − Ph(H,q, s,w) contains a factor that vanishes when q = 1. Because of the
implicit condition on s for a given q , this factor is not, in general, (q − 1). As an example,
the difference Ph(S4, q, s,w) − Ph(L4, q, s,w) in (2.66) contains the factor s(q − s). For
q = 1, the values of s are implicitly restricted to s = 0 and s = 1. For either of these choices,
the factor, and hence the difference, vanishes.

A remark concerning duality for planar graphs is also in order here. Let G = (V ,E)

be a planar graph, and denote its planar dual by G∗. The chromatic polynomial P (G,q)

counts not just the proper q-colorings of the vertices of G, but also, and equivalently, the
proper q colorings of the faces of G∗. Similarly, for this planar graph G, the weighted-set
chromatic polynomial Ph(G,q, s,w) describes not just the weighted-set proper q-colorings
of the vertices of G but also, and equivalently, the weighted-set proper q-colorings of the
faces of G∗.

2.6 Lower Bounds on Ph(G,q, s,w)

We derive some bounds on Ph(G,q, s,w) for certain types of graphs. Our method for
this will be to calculate the contribution to Ph(G,q, s,w) resulting from a certain pro-
cedure for performing proper q-colorings of the graph G. By the general formula ex-
pressing Ph(G,q, s,w) as the v = −1 special case of the Potts model partition function
Z(G,q, s, v,w) together with the formulation of this partition function as a sum over spin
(or equivalently, color) configurations, (2.1) with (2.2), it follows that there are other color
configurations in addition to the particular one that we consider, contributing (positive terms)
to Ph(G,q, s,w). Therefore each particular proper q-coloring procedure that we consider
yields a lower bound on Ph(G,q, s,w). The specific proper q-coloring procedure that pro-
vides a good lower bound to Ph(G,q, s,w) depends on the type of graph G, the values of
q , s, and w.

Let us consider a bipartite graph Gbip, defined as a graph whose vertex set V can be
partitioned into subsets V1 and V2 such that a vertex in V1 has edges that connect it only to a
vertex or vertices in V2 and vice versa. An equivalent condition for a graph to be bipartite is
that its chromatic number χ(Gbip) = 2. As above, we denote the number of vertices in G, as
n(G) ≡ n and, further, the number of vertices in V1 and V2 as n1 and n2, respectively. With
no loss of generality, we label these subsets of vertices so that n1 ≤ n2. These numbers n1

and n2 may be comparable or may be quite different. For example for a lattice graph such
as the circuit graph, the square, honeycomb, simple cubic, or body-centered cubic lattices,
with periodic boundary conditions that preserve the bipartite nature of the lattices, n1 = n2.
However, for the star graph Sn, V1 consists of the central vertex, so that n1 = 1, while V2

is comprised of all of the vertices on the ends of the edges forming the rays of the star, so
n2 = n − 1. For an Sn graph with n � 1, it follows that n2 � n1.

For the following, we assume that q ≥ 2 so that a proper q-coloring of the bipartite graph
Gbip is possible. If w = 1, then a well-known elementary lower bound on P (Gbip, q) is ob-
tained by (i) assigning a single color to all of the vertices in V1 and (ii) independently choos-
ing a color out of the remaining q − 1 for each of the vertices in V2. There are q(q − 1)n2

ways of doing this. Since, in general, there are also other color configurations contributing
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to a proper q-coloring of Gbip, this yields the lower bound

P (Gbip, q) ≥ q(q − 1)n2 . (2.77)

For the weighted-set chromatic polynomial, the situation is more complicated. With no
loss of generality, we again label the vertex subsets so that n1 ≤ n2. We also take q ≥ 2 so
that a proper (weighted) q-coloring is possible and also assume that s ≥ 2 (and s ≤ q , as
discussed above). Then for sufficiently large w > 1 in the FSCP interval, one lower bound
on Ph(Gbip, q, s,w) is obtained by (i) assigning one color from the favorably weighted set
Is to all of the vertices in V1, and then (ii) independently, for each vertex in V2, assigning a
color from among the remaining s − 1 colors in Is . This combined color assignment can be
made in s(s − 1)n2 ways, and yields a contribution s(s − 1)n2wn to Ph(Gbip, q, s,w). From
the inequality (2.20), it then follows that

Ph(Gbip, q, s,w) ≥ s(s − 1)n2wn. (2.78)

(Since n1 ≤ n2, this is an equivalent or better bound than the one obtained by making the
above color assignments with V1 and V2 reversed, viz., Ph(Gbip, q, s,w) ≥ s(s − 1)n1wn.)

On the other hand, for w in the DFSCP interval 0 ≤ w < 1, it can be preferable to min-
imize the number of vertices with colors in Is in order to maximize the contribution to
Ph(Gbip, q, s,w). For sufficiently small (positive) w, provided that q ≥ s +2, a lower bound
on Ph(Gbip, q, s,w) is then obtained by (i) assigning a single color from I⊥

s to all of the ver-
tices of V1, and (ii) independently, for each vertex of V2, assigning a color from among
the remaining (q − s − 1) colors in I⊥

s . This combined color assignment can be made in
(q − s)(q − s − 1)n2 ways. Invoking the inequality (2.20) again, we have

Ph(Gbip, q, s,w) ≥ (q − s)(q − s − 1)n2 . (2.79)

If w is only slightly less than unity, say 1 − ε < w < 1 for sufficiently small positive ε,
provided also that q ≥ s + 1, a different type of lower bound on Ph(Gbip, q, s,w) can be
obtained by the following proper q-coloring procedure: (i) one assigns a single color from
Is to all of the vertices of V1 and (ii) independently for each vertex in V2, one assigns a color
from I⊥

s . There are s(q − s)n2 ways of doing this, and the resultant term in Ph(Gbip, q, s,w)

is swn1(q − s)n2 . Using the inequality (2.20) again, one thus infers the lower bound

Ph(Gbip, q, s,w) ≥ swn1(q − s)n2 . (2.80)

Which of these lower bounds is the best depends in detail on Gbip (in particular, on n1

and n2), q , s, and w. It is easy to generalize these lower bounds to multipartite graphs.

3 Calculations of Z(G,q, s, v,w) and Ph(G,q, s,w) for Some Families of Graphs

In this section we give some illustrative explicit calculations of Z(G,q, s, v,w) and
Ph(G,q, s,w) for various families of graphs. Although we generally consider connected
graphs, we note that for the graph Nn consisting of n vertices with no edges,

Z(Nn, q, s, v,w) = Ph(Nn, q, s,w) = (q + t)n. (3.1)
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3.1 Line Graphs Ln

The line graph (also called path graph) Ln is the graph consisting of n vertices with each
vertex connected to the next one by one edge. In general, αZ,Ln,n−1(q, s, v) = nt + (n− 1)v.
We proceed to give some explicit results for Z(Ln, q, s,w) for various values of n. The case
L1 = N1 is already covered by (3.1). For the first few n values, we also give the expansions
in terms of powers of q and, for this latter expansion, we use the variables q , t , and w instead
of q , s, and w, because this makes the expressions shorter:

Z(L2, q, s, v,w) = s(s + v)w2 + 2s(q − s)w + (q − s)(q − s + v)

= q2 + (2t + v)q + t[t + v(w + 1)], (3.2)

Z(L3, q, s, v,w) = s(s + v)2w3 + s(q − s)(3s + 2v)w2

+ s(q − s)[3(q − s) + 2v]w + (q − s)(q − s + v)2

= q3 + (3t + 2v)q2 + (3t2 + 2vtw + 4vt + v2)q

+ t (v2w2 + 2vtw + wv2 + t2 + 2vt + v2). (3.3)

For L4 we give only the expansion in powers of w, since the equivalent expansion in powers
of q becomes somewhat lengthy:

Z(L4, q, s, v,w) = s(s + v)3w4 + 2s(q − s)(s + v)(2s + v)w3

+ s(q − s)[−3(s2 + (q − s)2) + 3q(q + v) + 2v2]w2

+ 2s(q − s)(q − s + v)[2(q − s) + v]w + (q − s)(q − s + v)3. (3.4)

3.2 Star Graphs Sn

A star graph Sn consists of one central vertex with degree n − 1 connected by edges with
n − 1 outer vertices, each of which has degree 1. (The context will always make clear the
difference between this symbol for the n-vertex star graph and the symbol Sn for the sym-
metric group on n objects.) The graph S2 is degenerate in the sense that it has no central
vertex but instead coincides with L2. The graph S3 is nondegenerate, and coincides with L3,
while the Sn for n ≥ 4 are distinct graphs not coinciding with those of other families. For
n ≥ 2, the chromatic number is χ(Sn) = 2. By the use of combinatoric coloring methods,
we have derived the following general formula for Z(Sn, q, s, v,w):

Z(Sn, q, s, v,w) =
n−1∑

j=0

(
n − 1

j

)
vj (q̃ + swj+1)(q̃ + sw)n−1−j

= (q − s)[q + s(w − 1) + v]n−1 + sw[q + s(w − 1) + wv]n−1 (3.5)

where q̃ = q − s, as given in (2.22). Evaluating (3.5) for v = −1 yields Ph(Sn, q, s,w). As
an explicit example, for the graph S4, we calculate

Z(S4, q, s, v,w) = Z(T4, s, v)w4 + s(q − s)(4s2 + 6sv + 3v2)w3

+ 3s(q − s)[2s(q − s) + qv]w2

+ s(q − s)[4(q − s)2 + 6(q − s)v + 3v2]w
+ Z(T4, q − s, v) (3.6)

where Z(Tn, q, v) was given in (2.63).
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3.3 Complete Graphs Kn

The complete graph Kn is the graph with n vertices such that each vertex is connected to
every other vertex by one edge. The chromatic number is χ(Kn) = n and the number of
edges is e(Kn) = (

n

2

)
. Let us introduce the compact notation xθ ≡ xθ(x), where θ(x) is the

step function from R → {0,1} defined as θ(x) = 1 if x > 0 and θ(x) = 0 if x ≤ 0. We have
derived the following theorem giving a general formula for Ph(Kn, q, s,w):

Ph(Kn, q, s,w) =
n∑

�=0

βKn,�(q, s)w� (3.7)

where

βKn,� =
(

n

�

)[
(�−1)θ∏

j=0

(s − j)

][
(n−�−1)θ∏

m=0

(q − s − m)

]
. (3.8)

Proof This result is proved by a combinatoric coloring argument. Accordingly, we take q to
be a non-negative integer. The resultant (3.7) and (3.8) allow the extension of q to R (and C).
First, if q < χ(Kn) = n, then Ph(Kn, q, s,w) vanishes identically. Hence, we shall formally
take q ≥ n to begin with; once we have obtained the results (3.7) and (3.8), it will be seen
that they allow an extension of q away from this range. If s ≥ n, then one can assigning n

different colors to the n vertices of Kn from the set Is , and this gives rise to a term with
degree n in w. To determine the coefficient of this term, we enumerate the number of ways
this color assignment can be made. We pick a given vertex and assign some color from Is

to this vertex, which we can do in any of s ways. Then we go on to the next vertex and
assign one of the remaining s − 1 colors in Is to that vertex, and so on for the n vertices.
The number of ways of making this color assignment, i.e., the coefficient of the term in
Ph(Kn, q, s,w) of maximal degree in w, viz., wn, is therefore

βKn,n(q, s) =
n−1∏

j=0

(s − j) = P (Kn, s). (3.9)

The fact that this coefficient is P (Kn, s) agrees with the v = −1 special case of the general
result of (2.35). Similarly, the term of order w0 is obtained by assigning n different colors
to the n vertices of Kn from the orthogonal set S⊥. By reasoning analogous to that given
above, it follows that the number of ways of doing this is given by replacing s by q − s in
(3.9), so

βKn,0(q, s) =
n−1∏

j=0

(q − s − j) = P (Kn, q − s). (3.10)

Having illustrated the logic on these two extremal terms, let us next consider the general w�

term with 0 ≤ � ≤ n. This term arises from color assignments in which we pick � different
colors from the set Is and assign them to � of the n vertices of Kn, and then n − � different
colors from the orthogonal complement set S⊥, which are assigned to the remaining n − �

vertices. The number of ways of doing this is

βKn,� =
[

(�−1)θ∏

j=0

(s − j)

][
(n−�−1)θ∏

m=0

(q − s − m)

]
. (3.11)

This proves the result in (3.7) and (3.8). �
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Evidently, with the polynomial Ph(Kn, q, s,w) as specified in these equations, one can
extend q and s away from non-negative integer values. Our result in (3.7) and (3.8) gen-
eralizes the result for the case s = 1 given in [2]. As is evident, for w = 1 or s = 0,
Ph(Kn, q, s,w) reduces to the (usual, unweighted) chromatic polynomial

P (Kn, q) =
n−1∏

j=0

(q − j). (3.12)

A corollary of (3.7) and (3.8) is that

If s < n, then βKn,j (q, s) = 0 for s < j ≤ n (3.13)

and hence

degw(Ph(Kn, q, s,w)) = min(n, s). (3.14)

Having calculated Ph(Kn, q, s,w), it is appropriate to discuss here another aspect in
which the weighted-set chromatic polynomial differs from the (usual, unweighted) chro-
matic polynomial. Let us consider a graph G that has the property of being composed of the
union of two subgraphs, G = G1 ∪ G2, such that G1 ∩ G2 = Km for some m. In the rest of
this paragraph, we assume that G has this property. Then P (G,q) satisfies the relation

P (G,q) = P (G1, q)P (G2, q)

P (Km,q)
. (3.15)

(This is sometimes called the complete-graph intersection theorem (KIT) for chromatic
polynomials.) In contrast, in general, Ph(G,q, s,w) is not equal to Ph(G1, q, s,w) ×
Ph(G2, q, s,w)/Ph(Km,q, s,w). This equality holds only for the four values w = 1, w = 0,
s = 0, and s = q where Ph(G,q, s,w) reduces to a chromatic polynomial. As a measure of
the deviation from equality, we define

[	Ph(G,q, s,w)]KIT ≡ Ph(G,q, s,w) − Ph(G1, q, s,w)Ph(G2, q, s,w)

Ph(Km,q, s,w)
. (3.16)

The vanishing of [	Ph(G,q, s,w)]KIT for w = 1, w = 0, and s = 0 is obvious. To show that
this vanishes for s = q , we use the relation (2.18) and obtain

[	Ph(G,q, q,w)]KIT = wn

[
P (G,q) − P (G1, q)P (G2, q)

P (Km,q)

]
= 0. (3.17)

Combining these results with the property that [	Ph(G,q, s,w)]KIT is a rational function in
its arguments, we have thus shown that

[	Ph(G,q, s,w)]KIT contains the factor s(q − s)w(w − 1). (3.18)

We give two illustrations. The line graph L3 has the property of being comprised of two L2

graphs intersecting on L1 = K1. Using (the v = −1 special cases of) our results in (3.1),
(3.2), and (3.4), we calculate

[	Ph(L3, q, s,w)]KIT = s(q − s)w(w − 1)2

q + s(w − 1)
. (3.19)
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Similarly, the graph L4 can be decomposed into L3 and L2 subgraphs that intersect on an
L1 = K1 graph. Using our results in (3.1) and (3.2)–(3.4), we calculate

[	Ph(L4, q, s,w)]KIT = s(q − s)w(w − 1)2[q + s(w − 1) − (w + 1)]
q + s(w − 1)

. (3.20)

A slightly more complicated case is the 4-vertex graph C4d consisting of a box with one
diagonal edge added. This graph has the structure of two C3 = K3 subgraphs intersecting on
the diagonal edge graph, L2 = K2. For this graph we calculate

[	Ph(C4d , q, s,w)]KIT = 2s(q − s)w(w − 1)2

[
1 − 2(q − 1)w

Ph(K2, q, s,w)

]
. (3.21)

We see that each of these differences [	Ph(G,q, s,w)]KIT satisfies the general factorization
property of (3.18).

4 Z(G,q, s, v) and Ph(G,q, s,w) for Cyclic Strip Graphs

4.1 General Structure

References [1, 3] have given a general structural formula for Z(Gs,Ly × m,BC, q, s, v,w)

on strip graphs Gs of width Ly vertices and length Lx , with cyclic or Möbius boundary con-
ditions (BC’s) for the case s = 1. Here we discuss the generalizations to arbitrary (integer)
s in the interval 0 ≤ s ≤ q . For cyclic strip graphs Gs of this type we have

Z(Gs,Ly × m, cyc, q, s, v,w) =
Ly∑

d=0

c̃(d)

nZh(Ly ,d,s)∑

j=1

[λZ,Gs ,Ly ,d,j (q, s, v,w)]m, (4.1)

where m = Lx for strips of the square and triangular lattices and m = Lx/2 for strips of the
honeycomb lattice. The coefficients c̃(d) are given by

c̃(d) ≡ c(d)(q̃) =
d∑

j=0

(−1)j

(
2d − j

j

)
q̃d−j (4.2)

where q̃ = q − s, as specified in (2.22) (see also [19, 20]). The first few of these coefficients
are c̃(0) = 1, c̃(1) = q̃−1 = q−s−1, c̃(2) = q̃2 −3q̃+1, etc. For Möbius strips, the switching
of certain c̃(d)’s, as specified for s = 1 in general in [3, 19], generalizes to arbitrary s in the
interval 0 ≤ s ≤ q . Further, from (4.8), it follows that there is only one term with d = Ly ,
and we find (dropping the j subscript)

λZ,Ly,Ly (q, s, v,w) = v. (4.3)

For Ph(Gs,Ly × m, cyc, q, s,w) = Z(G,Ly × m, cyc, q, s,−1,w), we have

Ph(G,Ly × m, cyc, q, s,w) =
Ly∑

d=0

c̃(d)

nPh(Ly ,d,s)∑

j=1

[λPh,Gs ,Ly ,d,j (q, s,w)]m. (4.4)
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As with Z, there is only one term with d = Ly , and (4.3) shows that this is

λPh,Gs ,Ly ,Ly (q, s,w) = −1. (4.5)

The nZh(Ly, d, s) satisfy the identity

Ly∑

d=0

c̃(d)nZh(Ly, d, s) = qLy (4.6)

while the nPh(Ly, d, s) satisfy the identity

Ly∑

d=0

c̃(d)nPh(Ly, d, s) = P (Ly, q) = q(q − 1)Ly−1. (4.7)

The reason why these identities hold for general s with the same right-hand side as for s = 0
and s = 1 is that the basic coloring constraints remain the same; the only thing that is dif-
ferent for nonzero s is the weighting factors. One method of calculating the nZh(Ly, d, s)

and nPh(Ly, d, s) is to differentiate these respective equations Ly times. One thereby ob-
tains two respective sets of Ly + 1 linear equations in the Ly + 1 unknowns nZh(Ly, d, s)

and nPh(Ly, d, s) for d = 0,1, . . . ,Ly . Solving these equations determines these numbers
nZh(Ly, d, s) and nPh(Ly, d, s).

We have used the method above to calculate the nZh(Ly, d, s) and nPh(Ly, d, s). For the
nZh(Ly, d, s) we find

nZh(Ly,Ly, s) = 1, (4.8)

nZh(Ly,Ly − 1, s) = (s + 1)Ly + (Ly − 1), (4.9)

nZh(Ly + 1,0, s) = (s + 1)nZh(Ly,0, s) + nZh(Ly,1, s) (4.10)

and, for 1 ≤ d ≤ Ly + 1,

nZh(Ly + 1, d, s) = nZh(Ly + 1, d − 1, s) + (s + 2)nZh(Ly, d, s)

+ nZh(Ly, d + 1, s). (4.11)

Some additional results, besides the general formulas for nZh(Ly, d, s) with d = Ly and
d = Ly − 1 given in (4.8) and (4.9), are

Ly = 2: nZh(2,0, s) = s2 + 2s + 2, (4.12)

Ly = 3: nZh(3,0, s) = s3 + 3s2 + 6s + 5,

nZh(3,1, s) = 3(s2 + 3s + 3), (4.13)

Ly = 4: nZh(4,0, s) = s4 + 4s3 + 12s2 + 20s + 14,

nZh(4,1, s) = 4s3 + 18s2 + 36s + 28,

nZh(4,2, s) = 6s2 + 20s + 20. (4.14)

The numbers nZh(Ly, d, s) of λZ,Ly,d,j (q, s, v,w)’s corresponding to each c̃(d) in the
general Potts model partition function are reduced for the special case v = −1 that yields the
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weighted-set chromatic polynomial. By coloring combinatoric arguments similar to those
used in [19] and [3], we determine the nPh(Ly, d, s) as follows. The numbers nPh(Ly, d, s)

are identically zero for d > Ly , and

nPh(Ly,Ly, s) = 1, (4.15)

nPh(Ly,Ly − 1, s) = (s + 1)Ly, (4.16)

nPh(Ly + 1,0, s) = snPh(Ly,0, s) + nPh(Ly,1, s) (4.17)

and, for 1 ≤ d ≤ Ly + 1,

nPh(Ly + 1, d, s) = nPh(Ly + 1, d − 1, s) + (s + 1)nPh(Ly, d, s)

+ nPh(Ly, d + 1, s). (4.18)

Some additional results, besides the general formulas for nPh(Ly, d, s) for d = Ly and d =
Ly − 1 given in (4.15) and (4.16), are

Ly = 2: nPh(2,0, s) = s2 + s + 1, (4.19)

Ly = 3: nPh(3,0, s) = s3 + s2 + 3s + 2,

nPh(3,1, s) = 3s2 + 5s + 4, (4.20)

Ly = 4: nPh(4,0, s) = s4 + s3 + 6s2 + 7s + 4,

nPh(4,1, s) = 4s3 + 9s2 + 15s + 9,

nPh(4,2, s) = 6s2 + 11s + 8. (4.21)

As we have noted above, for s = 0, Z(G,q, s, v,w) reduces to Z(G,q, v), so we focus on
the nonzero (integer) s values in the set Is . For these values we find

nPh(Ly, d, s) = nZh(Ly, d, s − 1) + nZh(Ly − 1, d, s − 1). (4.22)

From our determination of the numbers nZh(Ly, d, s) and nPh(Ly, d, s), we next calculate
the total numbers

NZh,Ly ,s =
Ly∑

d=0

nZh(Ly, d, s) (4.23)

and

NPh,Ly ,s =
Ly∑

d=0

nPh(Ly, d, s). (4.24)

From (4.22) it follows that for nonzero (integer) s values in the set Is ,

NPh,Ly ,s = NZh,Ly ,s−1 + NZh,Ly−1,s−1. (4.25)

Using our results in (4.8)–(4.11), we find that, for nonzero s ∈ Is ,

NZh,Ly ,s =
Ly∑

j=0

(
Ly

j

)(
2j

j

)
sLy−j (4.26)
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and hence, using (4.25), we have

NPh,Ly ,s =
Ly∑

j=0

(
Ly

j

)(
2j

j

)
(s − 1)Ly−j

+
Ly−1∑

j=0

(
Ly − 1

j

)(
2j

j

)
(s − 1)Ly−1−j . (4.27)

A few explicit results for low values of s are

NZh,1,s = s + 2, (4.28)

NZh,2,s = s2 + 4s + 6, (4.29)

NZh,3,s = s3 + 6s2 + 18s + 20 = (s + 2)(s2 + 4s + 10), (4.30)

NZh,4,s = s4 + 8s3 + 36s2 + 80s + 70, (4.31)

NZh,5,s = s5 + 10s4 + 60s3 + 200s2 + 350s + 252

= (s + 2)(s4 + 8s3 + 44s2 + 112s + 126), (4.32)

NZh,6,s = s6 + 12s5 + 90s4 + 400s3 + 1050s2 + 1512s + 924, (4.33)

and

NPh,1,s = s + 2, (4.34)

NPh,2,s = s2 + 3s + 4, (4.35)

NPh,3,s = s3 + 4s2 + 11s + 10, (4.36)

NPh,4,s = s4 + 5s3 + 21s2 + 37s + 26, (4.37)

NPh,5,s = s5 + 6s4 + 34s3 + 88s2 + 123s + 70, (4.38)

and

NPh,6,s = s6 + 7s5 + 50s4 + 170s3 + 366s2 + 401s + 192. (4.39)

For Ly � 1, these total numbers have the following dominant asymptotic exponential
growth rates (suppressing power-law prefactors):

NZh,Ly ,s = (s + 4)Ly for Ly → ∞ (4.40)

and

NPh,Ly ,s = (s + 3)Ly for Ly → ∞. (4.41)
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We note that the s → q − s symmetry (2.13) is not manifestly evident in the various
results that we have given for nZh(Ly, d, s), nPh(Ly, d, s), NZh,Ly ,s , and NPh,Ly ,s . This sym-
metry arises via identities involving the c̃(d) and the λ’s. The symmetry (2.13) implies that
(for s ∈ Is and denoting Lx ≡ m)

Ly∑

d=0

c(d)(q − s)

nZh(Ly ,d,s)∑

j=1

[λZ,Ly,d,j (q, s, v,w)]m

= wn

Ly∑

d=0

c(d)(s)

nZh(Ly ,d,q−s)∑

j=1

[λZ,Ly,d,j (q, q − s, v,w−1)]m (4.42)

and, for v = −1,

Ly∑

d=0

c(d)(q − s)

nPh(Ly ,d,s)∑

j=1

[λPh,Ly ,d,j (q, s,w)]m

= wn

Ly∑

d=0

c(d)(s)

nPh(Ly ,d,q−s)∑

j=1

[λPh,Ly ,d,j (q, q − s,w−1)]m. (4.43)

In particular, when s = q , Z simplifies to a multiple times the zero-field Z as speci-
fied by the general relation (2.18), with a consequent reduction in the number of distinct
λZ,Ly,d,j (q, s, v,w)’s. Using the fact that c(d)(0) = (−1)d [19], we can express this reduc-
tion as

Ly∑

d=0

(−1)d

nZh(Ly ,d,q)∑

j=1

[λZ,Ly,d,j (q, q, v,w)]m

= wn

Ly∑

d=0

c(d)(q)

nZ(Ly ,d)∑

j=1

[λZ,Ly,d,j (q, v)]m (4.44)

where nZ(Ly, d) ≡ nZh(Ly, d,0). For s = q − 1, (4.42) yields the identity

Ly∑

d=0

c(d)(1)

nZh(Ly ,d,q−1)∑

j=1

[λZ,Ly,d,j (q, q − 1, v,w)]m

= wn

Ly∑

d=0

c(d)(q − 1)

nZh(Ly ,d,1)∑

j=1

[λZ,Ly ,d,j (q,1, v,w−1)]m (4.45)

where c(d)(1) takes on the values [19]

c(d)(1) =
{1 if d = 0 mod 3

0 if d = 1 mod 3
−1 if d = 2 mod 3.

(4.46)

Analogous identities follow from (4.42) for s = q − 2, s = q − 3 and s = q − 4 (assum-
ing that s ∈ Is ), where the values of c(d)(2), c(d)(3), and c(d)(4) were given in (2.19)–(2.21)
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of Ref. [19]. Thus, in using the results above for nZh(Ly, d, s), nPh(Ly, d, s), NZh,Ly ,s , and
NPh,Ly ,s , it is understood that they apply for generic values of s ∈ Is but involve simplifica-
tions for special values of s. We shall give an example of this in the next section.

5 Circuit Graphs Cn

The circuit graph Cn, or equivalently, the 1D lattice with periodic boundary conditions, has
chromatic number

χ(Cn) =
{

2 if n ≥ 2 is even
3 if n ≥ 3 is odd.

(5.1)

(The case n = 1 is a single vertex with a loop, for which there is no proper q-coloring, so
Ph(C1, q,w) vanishes identically.) In general, Z(Cn, q, s, v,w) has the structure

Z(Cn, q, s, v,w) =
s+1∑

j=1

[λZ,1,0,j (q, s, v,w)]n + c̃(1)vn (5.2)

where we recall that c̃(1) = q − s − 1. We find that (suppressing arguments) the λZ,1,0,j for
1 ≤ j ≤ s + 1 are given by

λZ,1,0,j = 1

2

[
q − s + v + w(s + v)

± [{q − s + v + w(s + v)}2 − 4vw(q + v)]1/2
]

(5.3)

for j = 1,2 (which is the total set for s = 0 or s = 1), and, for s ≥ 2,

λZ,1,0,j = vw for 3 ≤ j ≤ s + 1. (5.4)

That is, for general s ∈ Is ,

Z(Cn, q, s, v,w) =
2∑

j=1

[λZ,1,0,j ]n + (s − 1)(vw)n + (q − s − 1)vn. (5.5)

It is readily checked that this expression for Z(Cn, q, s, v,w) (i) reduces to the zero-field
Potts model partition function

Z(Cn, q, v) = (q + v)n + (q − 1)vn (5.6)

for s = 0 or w = 1, (ii) satisfies the general symmetry property (2.13), and (iii) reduces to
wnZ(Cn, q, v) for s = q , in agreement with (2.18).

As was noted briefly at the beginning of the paper, our result (5.5) shows a qualitative
difference between the case s = 1 considered previously [2] and the more general set of
cases with s ≥ 2 in the interval Is , namely the fact that the third term, (s −1)(vw)n, is absent
for s = 1 but is present for other values of s ∈ Is . By the s ↔ q − s symmetry inherent in
(2.4) and (2.13), this also means that another term vanishes identically for s = q − 1 but is
present for other values of s ∈ Is ; this is the last term in (5.5), (q − s − 1)vn. It is interesting
to observe that the symmetry (2.13) applies not just to the total Z(Cn, q, s, v,w), but also
to parts of this function. Specifically, under the replacement s → q − s, one sees that (i) the
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sum of the last two terms in (5.5), (s − 1)(vw)n + (q − s − 1)vn, transforms into wn[(q −
s −1)vn + (s −1)(vw−1)n] and (ii) the first two terms,

∑2
j=1[λZ,1,0,j (q, s, v,w)]n transform

into wn
∑2

j=1[λZ,1,0,j (q, q −s, v,w−1)]n, so that each of these parts, (i) and (ii), individually
satisfies the symmetry (2.13). For the illustrative case v = −1, s = 1, and w = 3/2, the
magnitudes a = |λZ,1,0,1|, b = |λZ,1,0,2|, and c = 1 were plotted in Fig. 5 of Ref. [2]. In the
figure, b > a > c for 1.8 < q < 2; b > c > a for 1 < q < 1.8; c > b > a for

√
3−1 < q < 1;

and a = b < c for 1/3 < q <
√

3 − 1 (which corrects some misprints in the caption).
We exhibit Z(Cn, q, s, v,w) for 2 ≤ n ≤ 4 below. To keep the equations as compact as

possible, we write the coefficients of the terms of maximal degree in w and of degree 0 in w

in terms of zero-field partition functions using the general results (2.35) and (2.31). We find

Z(C2, q, s, v,w) = Z(C2, s, v)w2 + 2s(q − s)w + Z(C2, q − s, v)

= q2 + [2t + v(v + 2)]q + t[t + v(v + 2)(w + 1)], (5.7)

Z(C3, q, s, v,w) = Z(C3, s, v)w3 + 3s(q − s)(s + v)w2

+ 3s(q − s)(q − s + v)w + Z(C3, q − s, v), (5.8)

Z(C4, q, s, v,w) = Z(C4, s, v)w4 + 4s(q − s)(s + v)2w3

+ 2s(q − s)[3(q2 − s2 − (q − s)2) + 4qv + 4v2]w2

+ 4q(q − s)(q − s + v)2w + Z(C4, q − s, v). (5.9)

As usual, one obtains the Ph(Cn, q, s,w) for each n by setting v = −1 in Z(Cn, q, s, v,w).
For s = 1, the parts of Z(Cn, q,1, v,w) were given in Ref. [3] and Ph(Cn, q,1,w) was
given in Ref. [2]. Magnitudes of λ’s for Cn with s = 1 were plotted in Fig. 5 of Ref. [2]. (As
is evident from that figure, in the notation.)

In the context of weighted-set coloring, so that s is an integer in the interval Is , it was
noted [2] that for s = 1, Ph(Cn, q,1,w) contains the factor (q − 1). It was also noted that if
n is odd, say n = 2m+ 1 with m = 1,2, . . ., then Ph(C2m+1, q,1,w) also contains the factor
(q − 2), so that for odd n, Ph(C2m+1,2,1,w) = 0 [2]. The fact that if n = 2m+ 1 is odd and
q = 2, then one cannot perform a proper q-coloring of Cn, so that Ph(C2m+1,2, s,w) = 0,
is independent of both w and s. However, in contrast to the s = 1 case, where the vanishing
of Ph(C2m+1, q,1,w) for q = 2 occurred via a factor of (q − 2), this is not the case for
general s. Instead, Ph(C2m+1, q, s,w) is such that if one evaluates it at q = 2, there is a
factor which is a polynomial in s that implicitly but necessarily vanishes. This vanishing
occurs because of the implicit restriction on the values of s, namely that s is an integer in
the interval 0 ≤ s ≤ q . For example, consider Ph(C3, q, s,w), given above as the v = −1
special case of (5.8). Evaluating this at q = 2, we obtain

Ph(C3,2, s,w) = s(s − 1)(s − 2)(w − 1)3. (5.10)

This implicitly vanishes for any of the allowed (integer) values of s in the set Is because
for q = 2, s can only take on the values 0, 1, or 2 in this set. The same type of mechanism
is responsible for the vanishing of Ph(C2m+1, q, s,w) at q = 2 for higher values of m. For
s = 2, if n ≥ 3 is odd, then our results show that Ph(Cn, q, s,w) contains the factor (q − 2).
If s ≥ 3, then, in general, Ph(Cn, q, s,w) does not have such overall factors. The reason for
this is that s is bounded above by q , so that if s ≥ 3, then q ≥ 3. This is equal to χ(Cn) for
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n odd and greater than χ(Cn) for n even (cf. (5.1)), so that Ph(Cn, q, s,w) is not forced to
vanish the way it is for the cases of s = 0, 1,2 when q can be less then χ(Cn).

We have mentioned above that our general structural formulas for Z(G,q, s, v,w) and
Ph(G,q, s,w) with G a cyclic strip graph simplify considerably when s = q , as required
by the general relations (2.18) and (1.5). It is interesting to see how this occurs for this
family of circuit graphs, G = Cn. There are NZh,Ly ,s = s + 2 terms λZ,Ly,d,j (q, s, v,w)

with Ly = 1 whose n’th powers occur in (5.2). Of these, nZh,1,0,s = s + 1 multiply the
coefficient c̃(0) = 1 and the remaining term, [λZ,1,1(q, s, v,w)]n = vn, multiplies the co-
efficient c̃(1) = q − s − 1. From the general relation (2.18), we know that for s = q ,
Z(Cn, q, q, v,w) = wnZ(Cn, q, v), where Z(Cn, q, v) is the zero-field Potts model parti-
tion function for the circuit graph Cn, given by (5.6). Hence, we can deduce that of the s + 1
terms λZ,1,0,j (q, s, v,w), (i) one becomes equal to w(q + v); (ii) a second becomes equal
to v, and (iii) the remaining s − 1 = q − 1 terms become equal to wv. Using the fact that
s = q , so that c̃(1) = −1, we then have the reduction

Z(Cn, q, q, v,w) =
s+1∑

j=1

[λZ,1,0,j (q, q, v,w)]n + c̃(1)vn

= [w(q + v)]n + vn + (q − 1)(wv)n − vn

= wn[(q + v)n + (q − 1)vn]
= wnZ(Cn, q, v). (5.11)

Thus, the identity (2.18) (a special case of the symmetry (2.13)) is realized via a “transmi-
gration” process in which one or more λZ,Ly,d,j (q, s, v,w)’s for a given d become equal
or proportional to (respectively, one or more) λZ,Ly,d ′,j (q, s, v,w)’s for a different d ′ and
hence their m’th powers can be regrouped with the latter, thereby changing the effective
coefficients that multiply the [λZ,Ly ,d ′,j (q, s, v,w)]m’s , where here m = n. This transmigra-
tion process is a general one and occurs also for higher values of strip width Ly . This process
is also the mechanism whereby the identities (2.13) and (2.14) are satisfied. Thus, the results
above for nZh(Ly, d, s), nPh(Ly, d, s), NZh,Ly ,s , and NPh,Ly ,s apply for generic values of s,
but there are simplifications, involving this type of transmigration, for special values of s.

6 Some Properties of the Zeros of Ph(G,q, s,w)

One can solve for the zeros of Z(G,q, s, v,w) as functions of any of the four variables
q , s, v and w with the other three held fixed, and similarly, one can solve for the zeros of
Ph(G,q, s,w) as a function of any of the three variables q , s, and w with the other two held
fixed. Here it is understood that one uses (2.6), with these four variables each generalized to
lie in C.

In general, some zeros in w and s can have unbounded magnitudes as a function of the
other variables. The underlying reason for this can be seen at an algebraic level as the fact
that the coefficient of the highest-degree term in this variable in Z(G,q, s, v,w) can vanish
at some values of w and/or s. Related to this are the facts that (i) at the special values w = 1
and w = 0, Z(G,q, s, v,w) loses its dependence on s, and (ii) at the special value s = 0,
Z(G,q, s, v,w) loses its dependence on w. As a consequence, the zeros in these variables
move off to infinity. Similar statements apply for Ph(G,q, s,w). We proceed to discuss
some properties of these zeros.



54 R. Shrock, Y. Xu

6.1 Zeros of Z(G,q, s, v,w) and Ph(G,q, s,w) in q

Here we consider the zeros of Z(G,q, s, v,w) and Ph(G,q,w) in q , as a function of s

and w, for some graphs G. Since the maximal degree of Z(G,q, s, v,w) and Ph(G,q, s,w)

in the variable q is n(G), each of these polynomials has this number of zeros in the vari-
able q . In general, since Z(G,q, s, v,1) = Z(G,q, v) while Z(G,q, s, v,0) = Z(G,q −
s, v), it follows that as w decreases from 1 to 0, there is an overall shift to the right in the
zeros of Z(G,q, s, v,w) in the q plane by s units, and this holds, in particular, for the case
v = −1 that yields Ph(G,q, s,w). This shift is illustrated by some simple examples. For
G = L1 = K1 = N1, Z(L1, q, s, v,w) = 0 at

qL1z = −t = s(1 − w). (6.1)

This increases from 0 to s as w decreases from 1 to 0 in the DFSCP interval and decreases
from 0 through negative values as w increases above 1 in the FSCP interval. For L2 = K2,
Z(L2, q, s, v,w) vanishes at

qL2z,j = 1

2

[
−v + 2s(1 − w) ± √

v[v − 4sw(w − 1)]
]

(6.2)

where j = 1,2 for the ± sign. As w decreases from 1 to 0, the root qL2z,1 increases from
0 to s, while the root qL2z,2 increases from −v to s − v. The zeros of graph-coloring poly-
nomials in q satisfy certain boundedness properties for fixed nonzero magnetic field [21].
However, the zeros of Z(G,q, s, v,w) and Ph(G,q, s,w) in q are, in general, unbounded
as |w| → ∞. This is already evident in the simplest case of a single vertex, for which the
zero of Z(L1, q, s, v,w) at q = s(1 − w) has a magnitude that, for s 
= 0, goes to infinity as
|w| → ∞.

6.2 Zeros of Z(G,q, s, v,w) and Ph(G,q, s,w) in s

One may also study the zeros of Z(G,q, s, v,w) in each of the three variables s, v, and
w with the other two (and q) held fixed, and the zeros of Ph(G,q, s,w) in each of the
two variables s and w with the other (and q) held fixed. In general, these zeros are un-
bounded in magnitude even when the other variables vary over a finite range. The reason
for the divergences in these zeros of Z(G,q, s, v,w) is the fact that the coefficient of the
term in Z(G,q, s, v,w) of highest degree in the given variable can vanish as one changes
other variables, and similarly with Ph(G,q, s,w). Again, this can be illustrated with simple
examples.

We begin our discussion with the zeros in s, where it is understood that this variable is
formally extended from the integers in the interval Is to the complex numbers. The Potts
model partition function for the single-vertex graph L1, Z(L1, q, s, v,w), vanishes at

s = q

1 − w
. (6.3)

For q 
= 0, this diverges as w → 1. For L2, Z(L2, q, s, v,w) has zeros in s at

sL2z,j = −[2q + v(w + 1)] ± √
v[v(w + 1)2 + 4qw]

2(w − 1)
(6.4)
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where j = 1,2 correspond to the ± signs, respectively. We find that

sL2z,j ∼ −(q + v) ± √
v(q + v)

w − 1
as w → 1 (6.5)

so that as w → 1, the magnitudes |sL2z,j | are, in general, unbounded. These results for
the full Potts model partition function apply, a fortiori, to the special case v = −1 that
defines the weighted-set chromatic polynomial, Ph(L2, q, s,w). Above, we have explained
the origin of this type of divergence as being due to the fact that the coefficient of the
highest-power term of Z(G,q, s, v,w) and Ph(G,q, s,w) in the given variable, here s,
vanishes. This occurs at w = 1. Closely related to this, at w = 1, all dependence on s in
Z(G,q, s, v,w) disappears, so it is understandable that the zeros in s would disappear by
moving off to infinity in this limit.

6.3 Zeros of Z(G,q, s, v,w) and Ph(G,q, s,w) in w

Here we comment on zeros of Z(G,q, s, v,w) and Ph(G,q, s,w) in w. First, we note that
the symmetry (2.13) implies that if one replaces s by q −s, then the zeros of Z(G,q, s, v,w)

and Ph(G,q, s,w) in w away from the origin map into their inverses. In particular, if q = 2s,
then (2.13) reads Z(G,2s, s, v,w) = wnZ(G,2s, s, v,w−1), so that the zeros of Z away
from the origin in the w plane form a set that is invariant under inversion. For G = L1,
Z(L1, q, s, v,w) vanishes at

wL1z = 1 − q

s
. (6.6)

From (3.2), we find that Z(L2, q, s, v,w) = 0 for

wL2z,j = s(s − q) ± √
s(s − q)v(q + v)

s(s + v)
(6.7)

where j = 1,2 correspond to the ± signs, respectively. The right-hand sides of (6.6) and
(6.7) both diverge as s → 0. In particular,

wL2z,j ∼ ±
√

(−q)(q + v)

sv
as s → 0 (6.8)

for j = 1,2. The fact that, in general, the magnitudes of the zero wL1z of Z(L1, q, s, v,w)

and the zeros wL2z,j , j = 1,2, of Z(L2, q, s, v,w) diverge as s → 0 is again understandable,
since for a graph G, if s = 0, then Z(G,q, s, v,w) reduces to Z(G,q, v), with no depen-
dence on w. Hence, in the limit s → 0, it is natural that the zeros in w disappear by moving
off to infinity. Finally, as s → −v, we find that

wL2z,2 → q + 2v

2v
as s → −v (6.9)

while wL2z,1 is unbounded:

wL2z,1 ∼ −2(q + v)

s + v
as s → −v. (6.10)
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6.4 Zeros of Z(G,q, s, v,w) in v

To illustrate the calculation of the zeros of Z(G,q, s, v,w) in v, we again use our simple
example graph, L2. We find the zero of Z(L2, q, s, v,w) in v occurs at

v = − [q + s(w − 1)]2

q + s(w − 1)(w + 1)
. (6.11)

This has an unbounded magnitude if q + s(w2 − 1) = 0, i.e.,

s = q

1 − w2
. (6.12)

This divergence in the magnitude of the right-hand side of (6.11) does not directly affect
the weighted-set proper vertex coloring of this L2 graph because in the DFSCP region 0 ≤
w < 1, the condition (6.12) implies that s > q , outside the actual coloring interval Is , and in
the FSCP region w > 1, it implies that s is negative, again outside of this interval Is .

7 Quantities Defined in the Limit n(G) → ∞

7.1 f and 
 Functions

Let us consider families of graphs Gm that can be built up recursively, such as lattice strips.
For such graphs, the m + 1 member of the family is obtained from the m th member by
(possibly cutting and) gluing in a given subgraph. For example, for the graph Cm, one
cuts the circuit at some vertex and inserts another edge and vertex to get Cm+1, and so
forth. Generalizing this, another example is a strip of the square lattice with transverse
width Ly , length Lx = m, and periodic longitudinal boundary conditions, which we de-
note as sq(Ly × Lx, cyc). In this case, the number of vertices is n = LyLx . Generically, the
number of vertices of a recursive graph Gm is of the form n(Gm) = am + b, where a and b

are (integer) constants, so that the limit n → ∞ is equivalent to the limit m → ∞. We de-
note the formal n → ∞ limit of such graphs as {G} = limm→∞ Gm. In the present context,
this n → ∞ limit corresponds to the limit of infinite length for a strip graph of fixed width
and some prescribed boundary conditions. Correspondingly, one can define the free energy
per vertex as follows (with the subscript m suppressed in the notation)

f ({G}, q, s, v,w) = lim
n→∞n−1 ln[Z(G,q, s, v,w)] (7.1)

and a function 
({G}, q, s,w),


({G}, q, s,w) = lim
n→∞[Ph(G,q, s,w)]1/n. (7.2)

As before (cf. (1.9) of [22] and (2.8) of [23] and [24–26]), one must take account of a
noncommutativity of limits that can occur, namely the fact that for certain special values of
q , denoted {qsp}, the limits n → ∞ and q → qsp do not commute:

lim
n→∞ lim

q→qsp

Z(G,q, s, v,w)1/n 
= lim
q→qsp

lim
n→∞Z(G,q, s, v,w)1/n (7.3)
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and the analogous formulas for the v = −1 case which defines 
({G}, q, s,w). For further
details, we refer the reader to our previous discussions of this [2, 22, 23]. An explicit exam-
ple is provided by our result for Z(Cn, q, s, v,w) in (5.5); if one sets q = s + 1 first before
taking n → ∞, then the last term drops out, while if one takes n → ∞ first with q 
= s + 1,
then, since limn→∞[(q − s −1)vn]1/n = v, the last term may remain in f . We see also an ad-
ditional type of noncommutativity that is present, namely that if we extend s from an integer
in Is to a real (or complex) variable, then for a set of special values of s, denoted {ssp},

lim
n→∞ lim

s→ssp
Z(G,q, s, v,w)1/n 
= lim

s→ssp
lim

n→∞Z(G,q, s, v,w)1/n. (7.4)

Again, our result for Z(Cn, q, s, v,w) in (5.5) provides an illustration of this; if one sets
s = 1 first before taking n → ∞, then the third term, (s − 1)(vw)n, drops out, while if
one takes n → ∞ first with s 
= 1, and then sets s = 1, it follows that, since limn→∞[(s −
1)(vw)n]1/n = vw, the resultant limiting term vw may remain in f . Similarly, if one sets
s = q−1 before taking n → ∞, then the last term, (q−s−1)vn drops out, while if one takes
n → ∞ first with s 
= q − 1, and then sets s = q − 1, it follows that since limn→∞[(q − s −
1)vn]1/n = v, the resultant limiting term v may remain in f . In our analysis of the n → ∞
limit for recursive families of graphs, unless otherwise indicated, we shall choose the order
of limits in which we fix s first and then take n → ∞.

The function Ph({G}, q, s,w) generalizes the ground state degeneracy of the zero-
field, zero-temperature Potts antiferromagnet, W({G}, q) = limn→∞ P (G,q)1/n. Thus (with
care taken concerning the above-mentioned noncommutativity of limits), 
({G}, q, s,1) =

({G}, q,0,w) = W({G}, q). In the case of the zero-field, zero-temperature Potts antifer-
romagnet, the associated configurational entropy per vertex (which is thus the ground-state
entropy per site) {G} is S = kB lnW . The third law of thermodynamics states that the en-
tropy per site S should vanish as the temperature goes to zero. However, there are a number
of exceptions to this law. For instance, for the zero-field q-state Potts antiferromagnet on
a square lattice, an elementary argument yields the lower bound S/kB ≥ (1/2) ln(q − 1),
which is nonzero for q ≥ 3.

In the present case of the weighted-set chromatic polynomial, let us consider first the
FSCP interval w > 1 and assume that q ≥ 2, so that a proper q-coloring can be performed
for a bipartite graph. We also assume that s is an integer for this discussion and lies in the
interval 2 ≤ s ≤ q . Applying our lower bound (2.78) to a particular bipartite graph, namely
the strip graph of the square (sq) lattice with width Ly vertices and even length Lx vertices,
denoted sq(Ly × Lx), we have (with n1 = n2 = LxLy/2) the lower bound

Ph(sq(Ly × Lx), q, s,w) ≥ s(s − 1)n/2wn. (7.5)

Taking Lx → ∞ with Ly fixed, we thus obtain the lower bound 
(sq(Ly × ∞), q, s,w) ≥
w

√
s − 1. Hence, in this limit, the entropy is bounded below by

S(sq(Ly × ∞), q, s,w) ≥ lnw + 1

2
ln(s − 1) (FSCP case). (7.6)

For s ≥ 3 (which implies q ≥ 3 also), this ground state entropy is nonzero. In the DFSCP
interval 0 ≤ w < 1, with 1 ≤ s ≤ q − 3, applying our lower bound (2.79) to the same limit
of this strip graph, we have 
(sq(Ly × ∞), q, s,w) ≥ √

q − s − 1, so that

S(sq(Ly × ∞), q, s,w) ≥ 1

2
ln(q − s − 1) (DFSCP case). (7.7)

For the given range, q ≥ s + 3, this entropy is again nonzero.
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7.2 Example of Calculation of f and 
 for a Family of Graphs

We illustrate the calculation of the functions f and 
 for the n → ∞ limit of the circuit
graph Cn, or equivalently, the one-dimensional lattice with periodic boundary conditions.
We shall take s to be a fixed integer in the interval 0 ≤ s ≤ q for this analysis. For a
given set of values of q , s, v, and w, the functional form of f is determined by the term
λZ,1,0,j (q, s, v,w) in (5.5) with the largest magnitude. For fixed s, v, and w and sufficiently
large real q , this is λZ,1,0,1. Following our nomenclature in earlier work for w = 1, we de-
note this region as region R1. As for the zero-field case, f and 
 in this region are the same
for the n → ∞ limit of the line graph Ln and the circuit graph Cn. We denote these limits
as {L} and {C}. We thus have

f ({L}, q, s, v,w) = f ({C}, q, s, v,w) = ln[λZ,1,0,1(q, s, v,w)] (7.8)

and


({L}, q, s,w) = 
({C}, q, s,w) = ln[λPh,1,0,1(q, s,w)] (7.9)

where λZ,1,0,j (q, s, v,w), j = 1,2, were given for this family of graphs in (5.3) and
λPh,1,0,j (q, s,w) = λZ,1,0,j (q, s,−1,w).

It is of interest to consider how 
(G,q, s,w) for {G} = {L} (or equivalently {G} = {C}
in region R1) behaves for certain special cases or limits of its variables. For example, in the
limit where the weighting is removed, i.e., for w → 1, 
({L}, q, s,w) has the Taylor series
expansion


({L}, q, s,w) = q − 1 + s(q − 1)(w − 1)

q
− s(q − 1)(q − s)(w − 1)2

q3
+ O

(
(w − 1)3

)

as w → 1. (7.10)

For s = 1, it was shown in Ref. [2] that the asymptotic behavior of 
({L}, q, s,w) for large
|w| is


({L}, q, s,w) ∼ √
(q − 1)w

[
1 + O

(
1√
w

)]
for s = 1 and |w| → ∞. (7.11)

In contrast, for s 
= 1, we find


({L}, q, s,w) ∼ (s − 1)w + q − s − 1

2
+

[
s(q − s) + q − 1

2(s − 1)

]
+ O

(
1

w

)
. (7.12)

As is evident, the large-|w| behavior is different, depending on whether or not s = 1. For
|q| → ∞, we obtain the asymptotic expansion


({L}, q, s,w) ∼ q + s(w − 1) − 1 − sw(w − 1)

q
+ O

(
1

q2

)
. (7.13)

Extending s from an integer in the interval Is to a real (or complex) number, it is of interest
to determine the limiting behavior of 
({L}, q, s,w) as s → 0 and s → q . We calculate


({L}, q, s,w) = q − 1 + (w − 1)(q − 1)s

w + q − 1
+ O(s2) as s → 0 (7.14)
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and


({L}, q, s,w) = w(q − 1) − w(w − 1)(q − 1)(q − s)

w(q − 1) + 1

+ O
(
(q − s)2

)
as s → q. (7.15)

From our study of 
({G}, q, s,w) for the n → ∞ limits of various families of graphs,
we have observed several generic properties. Let us consider families of strip graphs G of
regular lattices �. Let the chromatic number of the lattice � be denoted as χ(�) and assume
that q ≥ χ(�). A technical assumption is that the n → ∞ limit of the lattice strip graphs is
taken in a manner such that for each G, χ(G) = χ(�). (For example, for square-lattice strip
graphs with periodic longitudinal boundary, this means taking the length to be even.) Then
for fixed s ∈ Is we have observed that (i) for fixed w > 0, 
({G}, q, s,w) is a monotonically
increasing function of q and (ii) for fixed q , 
({G}, q, s,w) is a monotonically increasing
function of w for w > 0. One can also analyze the behavior of 
({G}, q, s,w) as a function
of s for fixed q and w, but because of the noncommutativity (7.4), one must take care in
specifying the order of limits used in defining this function. The order that we take is first to
set s to a given value in Is and then to take n → ∞. As is evident in the definition of Is , it is
understood that s ≤ q . We find that if w > 1, then 
({G}, q, s,w) is an increasing function
of s ∈ Is , while if 0 ≤ w < 1, then 
({G}, q, s,w) is a decreasing function of s ∈ Is .

Focusing on the circuit graph, one sees that for values of the variables such that another
term λ in (5.5) becomes dominant, there is a non-analytic change in f and 
. As we have
discussed earlier, this is also associated with a locus, denoted generically B, that comprises
the accumulation set of zeros of the respective function, f and 
, For definiteness, we ana-
lyze the locus B in the q plane (denoted Bq ) for 
({C}, q, s,w), with s and w fixed. It may
be recalled that for the n → ∞ limit of the unweighted chromatic polynomial, Bq is the unit
circle |q −1| = 1, so qc = 2 in that case [22, 27]. For the weighted-set chromatic polynomial,
Ph(Cn, q, s,w), the accumulation locus B depends on the value of s and on whether w is in
the DFSCP interval 0 ≤ w < 1 or the FSCP interval w > 1. We consider here the DFSCP
interval, since as w decreases from 1 to 0, Ph(Cn, q, s,w) interpolates between P (G,q) and
P (G,q − s). We also generally take s 
= 0, since for s = 0 Ph(Cn, q, s,w) reduces to the
well-studied unweighted chromatic polynomial P (Cn, q). (However, our results subsume
this s = 0 case.)

In this DFSCP interval, for s = 1 or s = 2, the lower boundary of the region R1 on the
real axis, denoted qc , is determined by the equality in magnitude

|λPh,1,0,1| = |λPh,1,1| = 1, (7.16)

which yields the result

qc = 2 + s(1 − w)

1 + w
for {G} = {C} and s = 1 or s = 2 and 0 ≤ w ≤ 1. (7.17)

For 0 ≤ w < 1, this value of qc is greater than the value qc = 2 for the unweighted chromatic
polynomial. Furthermore, as is evident from (7.17), qc is a monotonically increasing func-
tion of s for fixed w in this DFSCP interval and a monotonically decreasing function of w

for the fixed values of s given above. As w decreases from 1 to 0, qc increases continuously
from 2 to 2+ s. In contrast, the left-hand part of the boundary changes discontinuously; as w

decreases by an arbitrarily small amount below 1, the point on the left where Bq crosses the
real q axis jumps discontinuously from q = 0 to q = s. These results are in accord with the



60 R. Shrock, Y. Xu

fact that for w = 0, Bq is the locus of solutions to the equation |q − (1+ s)| = 1, i.e., the unit
circle in the q plane centered at the point q = 1+ s, crossing the real axis on the left at q = s

and on the right at q = 2 + s. The locus Bq separates the q plane into two regions. We label
the regions outside and inside the closed curve B as R1 (noted before) and R2, respectively.
For s = 1, there are several noncommutativity effects relevant for Bw [2]. If, for example,
one takes n → ∞ first and then sets q = 2, the relevant terms are |λPh,1,0,j | = |√w| and
|λPh,1,1| = 1, so that Bw is the unit circle |w| = 1.

For s > 2, there is a change in the locus Bq , because the condition of degeneracy of
leading λ’s is different; rather than (7.16), it takes the form

|λPh,1,0,1| = |λPh,1,0,2|. (7.18)

This entails the condition that (i)

q − s − 1 + w(s − 1) = 0, (7.19)

so that λPh,1,0,1 = −λPh,1,0,2, and the condition that (ii) |λPh,1,0,1| = |λPh,1,0,2| > 1, so that
these λ’s are dominant. Substituting for q from (7.19), we find that condition (ii) is satisfied
in the relevant range of w for

1

s − 1
< w < 1. (7.20)

This interval is nonvanishing if s > 2. Thus, for s > 2, provided that conditions (i) and (ii)
are satisfied, Bq has the form of an open self-conjugate arc that crosses the real axis at the
point given by (7.19), so that in this case,

qc = s + 1 − w(s − 1) for {G} = {C} and s > 2 and
1

s − 1
< w < 1. (7.21)

This self-conjugate arc is concave to the left and ends at the arc endpoints given by where
the (v = −1 evaluation of the) expression in the square root of (5.3) vanishes, namely

qe, q
∗
e = (s + 1)(1 − w) ± 2i

√
sw(1 − w). (7.22)

This locus does not separate the q plane into different regions. It is straightforward to carry
out a similar analysis of Bq for the FSCP regime w > 1.

8 Related Topics

As our results show, one finds a number of intriguing features in the study of weighted-set
vertex coloring of graphs. There are many further directions of research in this general area.
One could, for example, use the methods presented here to calculate Z(G,q, s, v,w) and
Ph(G,q, s,w) for other individual graphs and families of graphs. One could also investigate
further the zeros of these functions in various variables and their accumulation sets B for
recursive graphs in the limit of infinitely many vertices. It would, moreover, be worthwhile to
study connections with weighted loop models [28, 29]. One could also investigate a different
but related type of graph coloring problem in which the set of colors that one chooses from to
assign to each vertex depends on the vertex. The unweighted case is called the list coloring
problem in graph theory [30], and it would be useful to study the weighted-set generalization
of list coloring. We are pursuing these studies.



Weighted-Set Graph Colorings 61

9 Conclusions

In this paper we have studied the weighted-set graph coloring problems, in which one as-
signs q colors to the vertices of a graph such that adjacent vertices have different colors,
with a vertex weighting w that either disfavors or favors a given set of s colors. In particu-
lar, we have analyzed an associated weighted-set chromatic polynomial Ph(G,q, s,w) and
have also related this to a corresponding Potts model partition function with external mag-
netic fields, Z(G,q, s, v,w). These functions exhibit a wealth of interesting properties. We
have proved various general results on these and illustrated them for particular graphs and
families of graphs.
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